
 AVR 8-bit Microcontrollers

 AVR201: Using the AVR Hardware Multiplier

 APPLICATION NOTE

Features

• 8- and 16-bit implementations
• Signed and unsigned routines
• Fractional signed and unsigned multiply
• Executable example programs

Introduction

The Atmel® megaAVR® 8-bit Microcontrollers is a series of devices in the
AVR® RISC Microcontroller family that includes, among other new
enhancements, a hardware multiplier. This multiplier is capable of multiplying
two 8-bit numbers, giving a 16-bit result using only two clock cycles. The
multiplier can handle both signed and unsigned integer and fractional
numbers without speed or code size penalty. The first section of this
document will give some examples of using the multiplier for 8-bit arithmetic.

Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

Table of Contents

Features.. 1

Introduction..1

1. Description...3

2. 8-bit Multiplication..5
2.1. Example 1 – Basic Usage.. 5
2.2. Example 2 – Special Cases..6
2.3. Example 3 – Multiply-accumulate Operation..6

3. 16-bit Multiplication..7
3.1. 16-bit x 16-bit = 16-bit 16-bit x 16-bit = 16-bit Operation..7
3.2. 16-bit x 16-bit = 24-bit Operation..8
3.3. 16-bit x 16-bit = 32-bit Operation..9

3.3.1. Example 4 – Basic Usage 16-bit x 16-bit = 32-bit Integer Multiply................................ 9
3.4. 16-bit Multiply-accumulate Operation...10

4. Using Fractional Numbers... 11
4.1. Example 5 – Basic Usage 8-bit x 8-bit = 16-bit Signed Fractional Multiply................................ 12
4.2. Example 6 – Multiply-accumulate Operation..13

5. Comment on Implementations...14

6. Revision History...15

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

2

1. Description
To be able to use the multiplier, six instructions are added to the AVR instruction set. These instructions
are:

• MUL, multiplication of unsigned integers
• MULS, multiplication of signed integers
• MULSU, multiplication of a signed integer with an unsigned integer
• FMUL, multiplication of unsigned fractional numbers
• FMULS, multiplication of signed fractional numbers
• FMULSU, multiplication of a signed fractional number and with an unsigned fractional number

The MULSU and FMULSU instructions are included to improve the speed and code density for
multiplication of 16-bit operands. The second section will show examples of how to efficiently use the
multiplier for 16-bit arithmetic.

The component that makes a dedicated digital signal processor (DSP) specially suitable for signal
processing is the Multiply-Accumulate (MAC) unit. This unit is functionally equivalent to a multiplier
directly connected to an Arithmetic Logic Unit (ALU). The megaAVR microcontrollers are designed to give
the AVR family the ability to effectively perform the same multiply-accumulate operation. This application
note will therefore include examples of implementing the MAC operation.

The Multiply-Accumulate operation (sometimes referred to as multiply-add operation) has one critical
drawback. When adding multiple values to one result variable, even when adding positive and negative
values to some extent cancel each other, the risk of the result variable to overrun its limits becomes
evident, i.e., if adding one to a signed byte variable that contains the value +127, the result will be -128
instead of +128. One solution often used to solve this problem is to introduce fractional numbers, i.e.,
numbers that are less than 1 and greater than or equal to -1. The final section presents some issues
regarding the use of fractional numbers.

In addition to the new multiplication instruction, a few other additions and improvements are made to the
megaAVR processor core. One improvement that is particularly useful is the instruction MOVW - Copy
Register Word, which makes a copy of one register pair into another register pair.

The file “AVR201.asm” contains the application note source code of the 16-bit multiply routines.

A listing of all implementations with key performance specifications is given in the table below.

Table 1-1. Performance Summary

8-bit x 8-bit routines Word [cycles)

Unsigned multiply 8 x 8 = 16 bits 1 (2)

Signed multiply 8 x 8 = 16 bits 1 (2)

Fractional signed/unsigned multiply 8 x 8 = 16 bits 1 (2)

Fractional signed multiply-accumulate 8 x 8 = 16 bits 3 (4)

16-bit x 16-bit routines

Signed/unsigned multiply 16 x 16 = 16 bits 6 (9)

Unsigned multiply 16 x 16 = 32 bits 13 (17)

Signed multiply 16 x 16 = 32 bits 15 (19)

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

3

8-bit x 8-bit routines Word [cycles)

Signed multiply-accumulate 16 x 16 = 32 bits 19 (23)

Fractional signed multiply 16 x 16 = 32 bits 16 (20)

Fractional signed multiply-accumulate 16 x 16 = 32 bits 21 (25)

Unsigned multiply 16 x 16 = 24 bits 10 (14)

Signed multiply 16 x 16 = 24 bits 10 (14)

Signed multiply-accumulate 16 x 16 = 24 bits 12 (16)

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

4

2. 8-bit Multiplication
Doing an 8-bit multiply using the hardware multiplier is simple, as the examples in this chapter will clearly
show. Just load the operands into two registers (or only one for square multiply) and execute one of the
multiply instructions. The result will be placed in register pair R0:R1. However, note that only the MUL
instruction does not have register usage restrictions. Figure 2-1 shows the valid (operand) register usage
for each of the multiply instructions.

2.1. Example 1 – Basic Usage
The first example shows an assembly code that reads the port B input value and multiplies this value with
a constant (5) before storing the result in register pair R17:R16.
in r16,PINB ; Read pin values
ldi r17,5 ; Load 5 into r17
mul r16,r17 ; r1:r0 = r17 * r16
movw r17:r16,r1:r0 ; Move the result to the r17:r16 register pair

Note the use of the MOVW instruction. This example is valid for all of the multiply instructions.

Figure 2-1. Register Restrictions

R0
R1
R2
R3
R4

R6
R5

R7
R8
R9
R10
R11
R12

R14
R13

R15
R16
R17
R18
R19
R20

R22
R21

R23
R24
R25
R26
R27
R28

R30
R29

R31

MUL

R16
R17
R18
R19
R20

R22
R21

R23
R24
R25
R26
R27
R28

R30
R29

R31

R16
R17
R18
R19
R20

R22
R21

R23

MULS MULSU
FMUL

FMULS
FMULSU

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

5

2.2. Example 2 – Special Cases
This example shows some special cases of the MUL instruction that are valid.
lds r0,variableA ; Load r0 with SRAM variable A
lds r1,variableB ; Load r1 with SRAM variable B
mul r1,r0 ; r1:r0 = variable A * variable B
lds r0,variableA ; Load r0 with SRAM variable A
mul r0,r0 ; r1:r0 = square(variable A)

Even though the operand is put in the result register pair R1:R0, the operation gives the correct result
since R1 and R0 are fetched in the first clock cycle and the result is stored back in the second clock
cycle.

2.3. Example 3 – Multiply-accumulate Operation
The final example of 8-bit multiplication shows a multiply-accumulate operation. The general formula can
be written as:

c(n) = a(n) × b + c(n – 1)

; r17:r16 = r18 * r19 + r17:r16
in r18,PINB ; Get the current pin value on port B
ldi r19,b ; Load constant b into r19
muls r19,r18 ; r1:r0 = variable A * variable B
add r16,r0 ; r17:r16 += r1:r0
adc r17,r1

Typical applications for the multiply-accumulate operation are FIR (Finite Impulse Response) and IIR
(Infinite Impulse Response) filters, PID regulators and FFT (Fast Fourier Transform). For these
applications the FMULS instruction is particularly useful. The main advantage of using the FMULS
instruction instead of the MULS instruction is that the 16-bit result of the FMULS operation always may be
approximated to a (welldefined) 8-bit format. This is discussed further in the Using Fractional Numbers
section.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

6

3. 16-bit Multiplication
The new multiply instructions are specifically designed to improve 16-bit multiplication. This chapter
presents solutions for using the hardware multiplier to do multiplication with 16-bit operands.

The figure below schematically illustrates the general algorithm for multiplying two 16-bit numbers with a
32-bit result (C = A • B). AH denotes the high byte and AL the low byte of the A operand. CMH denotes
the middle high byte and CML the middle low byte of the result C. Equal notations are used for the
remaining bytes.

The algorithm is basic for all multiplication. All of the partial 16-bit results are shifted and added together.
The sign extension is necessary for signed numbers only, but note that the carry propagation must still be
done for unsigned numbers.

Figure 3-1. 16-bit Multiplication, General Algorithm

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

+

= CH CMH CML CL

(s ign ext)

(s ign
ext)

(s ign
ext)

3.1. 16-bit x 16-bit = 16-bit 16-bit x 16-bit = 16-bit Operation
This operation is valid for both unsigned and signed numbers, even though only the unsigned multiply
instruction (MUL) is needed. This is illustrated in the figure below. A mathematical explanation is given:

When A and B are positive numbers, or at least one of them is zero, the algorithm is clearly correct,
provided that the product C = A • B is less than 216 if the product is to be used as an unsigned number, or
less than 215 if the product is to be used as a signed number.

When both factors are negative, the two’s complement notation is used; A = 216 - |A| and B = 216 - |B|:� = � *� = 216− � * 216− � = � *� + 232− 216 * � + �
Here we are only concerned with the 16 LSBs; the last part of this sum will be discarded and we will get
the (correct) result C = |A • B|.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

7

Figure 3-2. 16-bit Multiplication, 16-bit Result

AH AL BH BLX

AL * BL

AL * BH

AH * BL+

+

= CLCH

1

2

3

When one factor is negative and one factor is positive, for example, A is negative and B is positive:� = � *� = 216− � * � = 216 * � − � *� = 216− � *� + 216 * � − 1
The MSBs will be discarded and the correct two’s complement notation result will be C = 216 - |A • B|.

The product must be in the range 0 ≤ C ≤ 216 - 1 if unsigned numbers are used, and in the range -215 ≤ C
≤ 215 - 1 if signed numbers are used.

When doing integer multiplication in C language, this is how it is done. The algorithm can be expanded to
do 32-bit multiplication with 32-bit result.

3.2. 16-bit x 16-bit = 24-bit Operation
The routine’s functionality is illustrated in the figure below. For the 24-bit version of the multiplication
routines, the result is present in registers r18:r17:r16. The algorithm gives correct results provided that the
product C = A • B is less than 224 when using unsigned multiplication, and less than ±223 when using
signed multiplication.

Figure 3-3. 16-bit Multiplication, 24-bit Result

AH AL X BH BL

 AH * BH

 AL * BL

+ AH*BL

+ BH*AL

= CH CM CL

1

2

3

4

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

8

3.3. 16-bit x 16-bit = 32-bit Operation

3.3.1. Example 4 – Basic Usage 16-bit x 16-bit = 32-bit Integer Multiply
Below is an example of how to call the 16 x 16 = 32 multiply subroutine. This is also illustrated in the
figure below.
ldi R23,HIGH(672)
ldi R22,LOW(672) ; Load the number 672 into r23:r22
ldi R21,HIGH(1844)
ldi R20,LOW(184) ; Load the number 1844 into r21:r20
call mul16x16_32 ; Call 16bits x 16bits = 32bits multiply routine

Figure 3-4. 16-bit Multiplication, 32-bit Result

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

= CH CMH CML CL

(s ign
ext)

(s ign
ext)

1 + 2

3

4

The 32-bit result of the unsigned multiplication of 672 and 1844 will now be in the registers
R19:R18:R17:R16. If “muls16x16_32” is called instead of “mul16x16_32”, a signed multiplication will be
executed. If “mul16x16_16” is called, the result will be only 16 bits long and will be stored in the register
pair R17:R16. In this example, the 16-bit result will not be correct.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

9

3.4. 16-bit Multiply-accumulate Operation
Figure 3-5. 16-bit Multiplication, 32-bit Accumulated Result

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

+

(s ign ext)

(s ign
ext)

(s ign
ext)

= CH CMH CML CL

+ CH CL (Old)

(New)

CMH CML

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

10

4. Using Fractional Numbers
Unsigned 8-bit fractional numbers use a format where numbers in the range [0, 2> are allowed. Bits 6 - 0
represent the fraction and bit 7 represents the integer part (0 or 1), i.e., a 1.7 format. The FMUL
instruction performs the same operation as the MUL instruction, except that the result is left-shifted 1-bit
so that the high byte of the 2-byte result will have the same 1.7 format as the operands (instead of a 2.6
format). Note that if the product is equal to or higher than 2, the result will not be correct.

To fully understand the format of the fractional numbers, a comparison with the integer number format is
useful: The table below illustrates the two 8-bit unsigned numbers formats. Signed fractional numbers,
like signed integers, use the familiar two’s complement format. Numbers in the range [-1, 1> may be
represented using this format.

If the byte “1011 0010” is interpreted as an unsigned integer, it will be interpreted as 128 + 32 + 16 + 2 =
178. On the other hand, if it is interpreted as an unsigned fractional number, it will be interpreted as 1 +
0.25 + 0.125 + 0.015625 = 1.390625. If the byte is assumed to be a signed number, it will be interpreted
as 178 - 256 = -122 (integer) or as 1.390625 - 2 = -0.609375 (fractional number).
Table 4-1. Comparison of Integer and Fractional Formats

Bit number 7 6 5 4

Unsigned integer
bit significance

27=128 26=64 25=32 24=16

Unsigned fractional
number bit
significance

20=1 2-1=0.5 2-2=0.25 2-3=0.125

Bit number 3 2 1 |

Unsigned integer
bit significance

23=8 22=4 21=2 20=1

Unsigned fractional
number bit
significance

2-4=0.0625 2-5=0.03125 2-6=0.015625 2-7=0.0078125

Using the FMUL, FMULS, and FMULSU instructions should not be more complex than the MUL, MULS,
and MULSU instructions. However, one potential problem is to assign fractional variables right values in a
simple way. The fraction 0.75 (= 0.5 + 0.25) will, for example, be “0110 0000” if eight bits are used.

To convert a positive fractional number in the range [0, 2> (for example 1.8125) to the format used in the
AVR, the following algorithm, illustrated by an example, should be used:

Is there a “1” in the number?

Yes, 1.8125 is higher than or equal to 1. Byte is now “1xxx xxxx”

Is there a “0.5” in the rest?

0.8125/0.5 = 1.625

Yes, 1.625 is higher than or equal to 1.

Byte is now “11xx xxxx”

Is there a “0.25” in the rest?

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

11

0.625/0.5 = 1.25

Yes, 1.25 is higher than or equal to 1.

Byte is now “111x xxxx”

Is there a “0.125” in the rest?

0.25/0.5 = 0.5

No, 0.5 is lower than 1.

Byte is now “1110 xxxx”

Is there a “0.0625” in the rest?

0.5/0.5 = 1

Yes, 1 is higher than or equal to 1.

Byte is now “1110 1xxx”

Since we do not have a rest, the remaining three bits will be zero, and the final result is “1110 1000”,
which is 1 + 0.5 + 0.25 + 0.0625 = 1.8125.

To convert a negative fractional number, first add two to the number and then use the same algorithm as
already shown.

16-bit fractional numbers use a format similar to that of 8-bit fractional numbers; the high eight bits have
the same format as the 8-bit format. The low eight bits are only an increase of accuracy of the 8-bit
format; while the 8-bit format has an accuracy of ±2-8, the16-bit format has an accuracy of ±2-16. Then
again, the 32-bit fractional numbers are an increase of accuracy to the 16-bit fractional numbers. Note the
important difference between integers and fractional numbers when extra byte(s) are used to store the
number: while the accuracy of the numbers is increased when fractional numbers are used, the range of
numbers that may be represented is extended when integers are used.

As mentioned earlier, using signed fractional numbers in the range [-1, 1> has one main advantage to
integers: when multiplying two numbers in the range [-1, 1>, the result will be in the range [-1, 1], and an
approximation (the highest byte(s)) of the result may be stored in the same number of bytes as the
factors, with one exception: when both factors are -1, the product should be 1, but since the number 1
cannot be represented using this number format, the FMULS instruction will instead place the number -1
in R1:R0. The user should therefore assure that at least one of the operands is not -1 when using the
FMULS instruction. The 16-bit x 16-bit fractional multiply also has this restriction.

4.1. Example 5 – Basic Usage 8-bit x 8-bit = 16-bit Signed Fractional Multiply
This example shows an assembly code that reads the port B input value and multiplies this value with a
fractional constant (-0.625) before storing the result in register pair R17:R16.

in r16,PINB ; Read pin values
ldi r17,$B0 ; Load -0.625 into r17
fmuls r16,r17 ; r1:r0 = r17 * r16
movw r17:r16,r1:r0 ; Move the result to the r17:r16 register pair

Note that the usage of the FMULS (and FMUL) instructions is very similar to the usage of the MULS and
MUL instructions.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

12

4.2. Example 6 – Multiply-accumulate Operation
The example below uses data from the ADC. The ADC should be configured so that the format of the
ADC result is compatible with the fractional two’s complement format. For the ATmega83/163, this means
that the ADLAR bit in the ADMUX I/O register is set and a differential channel is used. (The ADC result is
normalized to one.)

ldi r23,$62 ; Load highbyte of fraction 0.771484375
ldi r22,$C0 ; Load lowbyte of fraction 0.771484375
in r20,ADCL ; Get lowbyte of ADC conversion
in r21,ADCH ; Get highbyte of ADC conversion
call fmac16x16_32 ;Call routine for signed fractional multiply accumulate

The registers R19:R18:R17:R16 will be incremented with the result of the multiplication of 0.771484375
with the ADC conversion result. In this example, the ADC result is treated as a signed fraction number.
We could also treat it as a signed integer and call it “mac16x16_32” instead of “fmac16x16_32”. In this
case, the 0.771484375 should be replaced with an integer.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

13

5. Comment on Implementations
All 16-bit x 16-bit = 32-bit functions implemented here start by clearing the R2 register, which is just used
as a “dummy” register with the “add with carry” (ADC) and “subtract with carry” (SBC) operations. These
operations do not alter the contents of the R2 register. If the R2 register is not used elsewhere in the
code, it is not necessary to clear the R2 register each time these functions are called, but only once prior
to the first call to one of the functions.

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

14

6. Revision History
Doc. Rev. Date Comments

1631D 10/2016 New template

1631C 06/2002 -

1631B - -

1631A - Initial document release

Atmel AVR201: Using the AVR Hardware Multiplier [APPLICATION NOTE]
Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

15

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-1631D-Using-the-AVR-Hardware-Multiplier_AVR201_Application Note-10/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, megaAVR®, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Features
	Introduction
	Table of Contents
	1. Description
	2. 8-bit Multiplication
	2.1. Example 1 – Basic Usage
	2.2. Example 2 – Special Cases
	2.3. Example 3 – Multiply-accumulate Operation

	3. 16-bit Multiplication
	3.1. 16-bit x 16-bit = 16-bit 16-bit x 16-bit = 16-bit Operation
	3.2. 16-bit x 16-bit = 24-bit Operation
	3.3. 16-bit x 16-bit = 32-bit Operation
	3.3.1. Example 4 – Basic Usage 16-bit x 16-bit = 32-bit Integer Multiply

	3.4. 16-bit Multiply-accumulate Operation

	4. Using Fractional Numbers
	4.1. Example 5 – Basic Usage 8-bit x 8-bit = 16-bit Signed Fractional Multiply
	4.2. Example 6 – Multiply-accumulate Operation

	5. Comment on Implementations
	6. Revision History

