
 VHDL OPERATORS

C. E. Stroud, ECE Dept., Auburn Univ. 1 8/06

Logic operators are the heart of logic equations and conditional statements
 AND OR NOT
 NAND NOR
 XOR XNOR

there is NO order of precedence so use lots of parentheses
XNOR was not in original VHDL (added in 1993)

Relational Operators:
Used in conditional statements
 = equal to
 /= not equal to
 < less than
 <= less then or equal to

> greater than
 >= greater than or equal to

Adding Operators
 + addition

- subtraction
 & concatenation
 puts two bits or bit_vectors into a bit_vector
 example:
 signal A: bit_vector(5 downto 0);
 signal B,C: bit_vector(2 downto 0);
 B <= ‘0’ & ‘1’ & ‘0’;
 C <= ‘1’ & ‘1’ & ‘0’;
 A <= B & C; -- A now has “010110”
Note: you should use std_logic_vector and unsigned or arith packages as follows:
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all; or
use IEEE.std_logic_arith.all;

Multiplying Operators
 * multiplication
 / division
 mod modulus
 rem remainder
 mod & rem operate on integers & result is integer
 rem has sign of 1st operand and is defined as:
 A rem B = A – (A/B) * B
 mod has sign of 2nd operand and is defined as:
 A mod B = A – B * N -- for an integer N
 examples:
 7 mod 4 -- has value 3
 -7 mod 4 -- has value –3
 7 mod (-4) -- has value –1
 -7 mod (-4) -- has value –3

 VHDL OPERATORS

C. E. Stroud, ECE Dept., Auburn Univ. 2 8/06

Misc. Operators
 ** exponentiation
 left operand = integer or floating point
 right operand = integer only
 abs absolute value
 not inversion

Shift Operators
 sll shift left logical (fill value is ‘0’)
 srl shift right logical (fill value is ‘0’)
 sla shift left arithmetic (fill value is right-hand bit)
 sra shift right arithmetic (fill value is left-hand bit)
 rol rotate left
 ror rotate right
 all operators have two operands:
 left operand is bit_vector to shift/rotate
 right operand is integer for # shifts/rotates
 - integer same as opposite operator with + integer
 examples:
 “1100” sll 1 yields “1000”
 “1100” srl 2 yields “0011”
 “1100” sla 1 yields “1000”
 “1100” sra 2 yields “1111”
 “1100” rol 1 yields “1001”
 “1100” ror 2 yields “0011”
 “1100” ror –1 same as “1100” rol 1

Highest Order of Precedence for Operators Lowest
Misc. Multiplying Adding Shift Relational Logic

Evaluation Rules:
1. Operators evaluated in order of precedence highest are evaluated first
2. Operators of equal precedence are evaluated from left to right
3. Deepest nested parentheses are evaluated first

Because of #2 you should use lots of parentheses

